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DETECTING A TARGET OF UNKNOWN BRIGHTNESS IN CLUTTER

GENERALIZED MAXIMUM LIKELIHOOD TEST

This effort devises a mathematical technique to permit the detection of a target of unknown
brightness that is buried in clutter in a digitized difference frame. The target is idealized to be a point
source whose output had been blurred by the atmosphere into a circular Gaussian blur with its center
at the position of the target. Therefore, in a difference frame a target should appear as a union of a
positive and a negative blur, referred to as a dipole. The dipole is said to be a union of two mono-
poles. The distance separating the centers of the positive and the negative blurs of the dipole can be
bounded above and below by using estimates of maximum and minimum (likely) target speed. It fol-
lows that in this model the target does not occlude the clutter. The clutter intensity in each pixel is
assumed to be a normally distributed random variable with unknown variance a that is assumed to be
the same in each pixel. Every mean is assumed to be 0. Let target brightness be an unknown param-
eter denoted by 13. Target intensity in each pixel is assumed to be a normally distributed random vari-
able with variance a where the mean intensity in pixel j is

a H r -(u _Xi)2_(V X2)2 d
2! S2 Spixelj exp L J dudv

2,ro2 S 5 pixelj p L 2 ;2 ( dudv,

where (xl, x2) is the center of the positive blur and (X 3 , X4 ) is the center of the negative blur. The
clutter and target intensities distributions in the different pixels are assumed to be independent random
variables.

The assumption is that we have been given F, a digitized difference frame. We need to deter-
mine a mathematical test for the presence of such a dipole. The test is to be applied to all 4 x 4
subframes of F, and it will decide if the target is present. If it decides affirmatively, it will then
determine the two positions. The approach uses the generalized maximum likelihood method to
obtain a function to be thresholded. Given observations of values of independent random variables
each having probability density functions involving an unknown vector of parameters 0, the value of 0
that maximizes the joint density function of the random variables (at the values in the reports) con-
verges as the number of reports goes to infinity to the correct value of 0. This is of course, subject to
plausible technical conditions. Thus, this maximum value of the joint density function should be a
good approximation to the joint density function at the values in the reports. We next deal with max-
imizations over a subset of the original space of possible observations to test the hypothesis.

Let sets A and B each be complements of the other. In the generalized maximal likelihood test
to decide whether to accept the null hypothesis that 0 belongs to class A, the maximizations are car-
ried out over the sets A and A UB, respectively, and one thresholds the ratio of the first to the
second. This is an approximation to a normalized likelihood of 0 belonging to set A. The value of
the threshold is to be between 0 and 1. It is immediate that it suffices to threshold on the ratio of the
maximum taken over the class A and the maximum taken over the class B, since if the larger max-
imum occurs in class B the function to be thresholded is unchanged, while if the larger maximum
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occurs in class A, the new value instead of being 1 (as it would have been) is now greater than 1 and
properly exceeds any threshold that is less than or equal to 1.

It suffices to use just one report in the generalized maximum likelihood method if the com-
ponents are statistically independent and if the dimensionality of the report vector is sufficiently high.'
Here we have 16 dimensional reports (since each of the 4 x 4 subframes contains 16 pixels), possi-
bly justifying our use of generalized maximum likelihood. Where 0 is the vector (xl, x2 , X3 , x4 , .),

let m (0) denote the 16 dimensional vector having as its components the mi. Where Y = (yi) is a
vector of observed pixel intensities (for a difference frame), the density function for the jth com-
ponent is

13(27r) 2 , 1 exp -(y, - Ms (0))2 ] (2)

The two hypotheses are either that a target is present or that a target is not present. If a target
is not present, we see that a is 0. In all other cases, a target is present. It follows that in our class B
each mj equals 0, so the density functions are constant there. Thus we must threshold

r 16 16

-S (YJ- Mj(0))2 + E (yj)2
max 1(2r)-8a-16 exp j j j=1

0 L2o02 JJ(3)
Actually, it sufficies to maximize

16 16
- A, (yj-mj(0)) 2 + F (yj) 2 . (4)

j=1 j=i

Several roads can be followed in attempting to determine the maximum of this expression. The one
that seemed to be best for immediately producing numbers is Approach 1 given below. Approach 2
was implemented near the end of this research effort, and only a few numbers were produced.
Approach 3 is a more general approach that was not implemented because of lack of time.

APPROACH 1

The idea here is to first maximize Eq. (4) analytically with respect to the brightness 1 for each
set of points p I and P2. Let O3M denote (m I(0 )o ... , m 16(0)), where M is independent of 13 but is still
a function of P I _(x 1, x2 ) and P2 = (x3 , X4). Let Y denote (Y 1 , Y16). Then Eq. (4) equals

32 M *M + 213 Y M. Taking the derivative with respect to 1, equating it to 0, and solving for 13
we find that for each choice of p I and P2 the maximum occurs at

M-M

and the maximum value is

(yM)2

M*M

1Harold Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton, N.J., 1974), 13th printing,
p. 496.
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It therefore suffices to threshold

max r X MlX
Pi, P2 Jw IM 

where I M I denotes the norm of M.

In practice, I Y * M M is maximized on a set of points chosen so that the maximum value
calculated there is very close to the true maximum. Values of p I and P 2 where the maximum occurs
are then taken to be the target positions. The actual numerical test is carried out as follows: Coordi-
nates are chosen so that the center point of the 4 x 4 array of pixels is labeled (0, 0) and each pixel
has unit length. We assume that p = (x 1 , X2) where - 1/2 c x I c 1/2 and -1/2 < x 2 < 1/2, while
P2 = (x 3 , x 4 ) where 1/2< I x3 1 I 3/2 and 1/2 < Ix4 1 c 3/2. The reason for these constraints is
that it is plausible to assume that the subframe chosen has the positive part of the dipole relatively
centered and that the target is not so slow as to have the negative part of the dipole in the same pixel
as the positive part of the dipole.

Experiments were run to compare the performance of the GML test to that of the Bayes test. In
these experiments, the points pI and P2 over which the maximization was carried out were of the
form (j /4, k /4), where j and k assume all integral values such that the respective restrictions on the
ranges of p I and P2 are satisfied. The experiments were run on an ensemble of Gaussian noise 4 x
4 frames (background ensemble) and on an ensemble of frames which were the sum of Gaussian noise
and an intensity corresponding to a target dipole (target ensemble). The dipole intensities were calcu-
lated by using Eq. (1) with the points pI and P2 chosen randomly from their respective ranges. A
false alarm is counted when the test identifies a member of the background ensemble as a target; a
missed detection is counted when the test identifies a member of the target ensemble as noise. The
important results of these experiments are shown in Figs. 1, 2, and 3. In these figures, the threshold
value does not appear explicitly. Rather, the percentage of false alarms that results when the thresh-
old is set to produce a specified number of missed detection is presented. Figure 1 presents the
results of the GML test described above. The signal-to-noise ratio of the dipole targets to the Gaus-
sian noise is indicated in the figure legend. Figure 2 presents a comparison of the GML test to the
Bayes test that is optimal for the strengths of the targets actually used in the experiment (S/N =
3.92). The GML test performs only slightly less well than the optimal test. Figure 3 compares the
performance of the GML test to that of a Bayes test that is not optimal for the target strengths of the
target ensemble used, but rather is optimal for much stronger (10x) targets. In this case, the GML
test is superior to the Bayes test for low false alarm rates. This result illustrates the value of a test
that is invariant to target strength.

APPROACH 2

In our second approach, we searched independently for the positive and the negative monopoles
of the dipole. Adopting this search procedure meant deciding that the two optical blurs do not cancel
each other out to any appreciable extent. This seems a reasonable assumption when the parameter a
in the optical blur is small compared to the expected distance between the positive and negative mono-
poles of the dipole. The test has the hypothesis that two monopoles exist and that they are located in
the respective regions indicated in Approach 1. The alternative hypothesis is that either 0 or 1 mono-
poles of either sign exist. (More than two monopoles are regarded as too unlikely an event to be con-
sidered. Detecting two monopoles that have the same sign is also a possibility; it is assumed that this
case also is sufficiently unlikely that it can be ignored.) Detecting both a positive and a negative
monopole but with the regions reversed is allowed. Such occurrences are likely even if all possible 4
x 4 subframes of a frame are tested, but they should cause little harm since examination would
reveal which monopole was which. We assume that the three possible cases, 0 monopoles, I mono-
pole, or 2 monopoles have equal prior probabilities of occurrence. We use generalized maximal like-
lihood in formulating our test and assumed that the brightnesses of the two monopoles are indepen-
dent. This is a somewhat unrealistic assumption, although it does somewhat compensate for the effect

3



OSGOOD AND PRIEST

0 5 10 15 20 25 30 35 40 45 50
% MISSED DETECTIONS

Figure I - GML test
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Figure 2 - GML test vs optimal test
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Figure 3 - GML test vs test optimal for strong targets

of any cancellation between the positive and negative monopoles, as well as any cancellation due to
clutter. Below, let mj(p) for j = 1,2,...,16, denote the mean brightness of pixel j under the
assumptions of a positive monopole of unit brightness at p. Let 01 and I2 denote the respective
brightnesses of the two monopoles, and let p, = (x 1 , x 2) and P2 = (X3, x4) denote the two monopole
positions.

We must evaluate

16 ~ 1 1 Q 1 ) 16 
-1 (1 j- Mj(p1))2- (yj -3 Om1(p2))2

j=I j=I 

1 max (2?r)- 8 O 1 6

3 0, 2,P ,P2

{

exp

16

-+ j(Y=
+ exp j=1

r 16 16
-E (Yj-zMj (p 1))2 - ,j)

j =1 j=1

16
- 1 32mj(p2))2- _ ()j) 2

j =
2o2 j

5

r= max
61,$62,PI IP 2

divided by

Z:U 
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I 16 2 l 1-2 F (y_~)2 IL
+exp L '' J

Our strategy is to maximize analytically with respect to ,1 and 32, in both the numerator and the
denominator, and carry out the remainder of each maximization by exhaustive search. The two 3s
always occur in distinct quadratics, i.e., in the

16
-(20a)- _ S (yj- Mj (#, p,))2,

j=1

so it suffices to maximize each independently with respect to (3. Such a calculation was carried out
above in complete detail when we were testing simultaneously for both monopoles of a dipole.

Let Y denote (yj). Where MA(p) is the vector (mi(p)), each of the above-mentioned quadratics
has a maximal value

(2a 2 -1 max (Y M }(Pi)) -(202)-l | y1 2 ,

where RI is the region containing pi.

Dividing the numerator and the denominator of the expression defining T by

exp (-(o2) Y

it follows that for i = 1, 2, where

Ti = (2a2) i max M(P))2

3T = (exp (TI + T2)) (1 + exp(TI) + exp (T2))

For large T1 and T2 , one may threshold by using the function min [T, T2 ). It can be seen that
this is correct by dividing both numerator and denominator by the larger of exp (Tj) and exp (T2) and
taking logarithms.

APPROACH 3

Here we adhere to the convention that an overbar denotes a vector, and a lower-case letter with
a subscript denotes a vector component.

This approach is a different version of Approach 1. Suppose that we do not want to use an
exhaustive search to maximize Eq. (4). This could become intractable, yet an analytic approach
seems to be too complicated to carry out. A promising simplification is to replace Eq. (1) in each
pixel by a linear function of the two target positions. To be definite, let our linear function be the
linear polynomial in two variables that, together with its first partial derivatives, agrees with the func-
tion in Eq. (1) at the center of the pixel. Therefore, the mj(O) are linear polynomials in four vari-
ables. Set
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mj (0) = ajk Zk + aj (5)
k =1

or equivalently,

- 4
M E Zk ak + a, (6)

k=1

ak = (ajk) for k = 1, 2, 3, 4, and a- = (aj).

By the Gram-Schmidt orthogonalization procedure, we can produce from the sequence of vectors
al, a2, a3 , a4 , and a a sequence of orthogonal vectors a1, a 2 , U3, a 4 , and e such that real numbers
Ckj and cj exist that satisfy

ak = E Ckj aj

jck

4

=T F, Cj ij + ii,

j=1

Ia, ...= 1 41 I aI,

- 4 r
M E Zk I Ckiaj + + cj Cj + C

k=1 Lk J j=1

=j L11Lk j Zk + i] +0 '
4

j=1

Wi C k-j kZk- +Ch
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Set Y = (yj), and recall that

_ 4
M = (mi) = W wa +a.

j=1

Then the function to be minimized is

-2:~~W tw(&j Y)+ (iX- + 12 1S - 12(Wj)2 +I - 120

= IHX12 L A LiWJ Ii 1 
2 J + I -J12

-4[ (hi (-y)2 + [(2(] ] ]

The first term inside the square brackets is 2 times the square of the distance from the point

- z rCY- Ce<2' Y Ci3- Y (X4- Y :P= _ .a I rI12' 1y12 ' 1I(12' 1-12' 1X12

to the nearest point of the form

((W 1 , (W 2 , (3W3, (W 4 , 0)

where -oo < ( < + oo, each wj is defined as above,. and every zj lies between -1/2 and 1/2. Call
this region R.

If fr belongs to R, the distance is 0, and we have our minimum. The region R is the projection
through the origin in 5 space of a 4-space figure H that is the image of the unit hypercube -1/2 c zj
< 1/2 under the transformation defining the wjs. Call this transformation T. Since one could write
the o and a- in terms of the Ek and a and go back through the argument above, T is invertible.
Equations of the form u - (z1, - , z4) = Ci, where ui is a vector of constants and the Ci are a set of
constants, are transformed by T into equations of the form v (z 1, - -*, z4) = Ci where W and T
determine T. Thus parallel planes are taken into parallel planes. Furthermore, our mapping
preserves functional values: the new linear function has the same value at the image under T of a
point q as the original linear function had at the point q. Points q of the unit hypercube are charac-
terized as being simultaneously between four pairs of hyperplanes. (We call the most general solid
defined in this manner a hyperparallelipiped.) Four pairs of linear functions exist that vanish on these
planes such that for each pair of functions: every q in the unit hypercube either takes on nonzero
values of opposite sign or exactly one function equals zero at q. The only points q satisfying these
conditions for all four pairs of hyperplanes are the points of the unit hypercube. Therefore H, the
image of the unit hypercube, is a hyperparallelipiped.

All of four-dimensional space lies in the projections from T(O) of the faces of H. Let fr1 be a
point of four-dimensional space lying outside of H. It is geometrically plausible that a face of H is a
closest face to frl (meaning that the minimum of the distance from Fr1 to a point of H is attained at a
point in this face) if and only if frl is in the projection of this face from T(0). Each of these eight
(closed) regions is bounded by planes H, through T(0) and through the hyperedges of the hyperface.

8
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As we have seen, the property of being enclosed by hyperplanes is preserved under the mapping T,
and, using the same argument, by the mapping T- 1 . Apply T- 1 to f 1 and test which faces of the
unit hypercube are closest to T-1 (Fl). The faces of the unit hypercube satisfy the equations

yi =

or

i = 2 2

Since the sides of the unit hypercube are orthogonal, the closest point of the unit hypercube to
T-'(fl) has each coordinate determined by the requirement that it be the closest point in the interval
[- 1/2, 1/2] to the corresponding coordinate of T 1(fl). Thus the closest faces can be read off, and
the corresponding faces are the closest faces of H to F1. However, we are after a closest point in
five-dimensional space so we are not yet finished.

In five-dimensional space, R is the projection of H through the origin, and each of the eight
faces of H are projected into five-dimensional hyperplanes through the origin. These latter hyper-
planes form the boundary of R. Clearly if (3 is positive (negative), the nearest point of R to pf must
be in the half plane where ( is positive (negative). Without loss of generality, .assume that ( is posi-
tive. The projections of the -II are five-dimensional hyperplanes through the point (T(0), 1), using
obvious notation, and the hyperedges of R. It is geometrically plausible that the closest faces of the
cone to a point f = ((wI, *--, (3W4, ,() are the faces where the point f is in the closed region
bounded by the hyperplanes through the boundaries of each face. Then it follows that the closest
faces of R to f are the projections of the closest faces of H to (w 1, . , w 4).

One can determine the normals to each of the eight faces of the five-dimensional cone. For this
set of closest faces of the cone, we may use the Gram-Schmidt normalization procedure to produce an
orthonormal basis e 1, . * * , El. Then,

p-S ej) ej

is the projection on these faces simultaneously so

Ad. -)2
j=1

is the required squared distance.
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